
15

Diagnosis for Reconfigurable Single-Electron Transistor

Arrays with a More Generalized Defect Model

CHIA-CHENG WU, National Tsing Hua University

YI-HSIANG HU, National Chiao Tung University

CHIA-CHUN LIN, National Tsing Hua University

YUNG-CHIH CHEN, Yuan Ze University

JUINN-DAR HUANG, National Chiao Tung University

CHUN-YAO WANG, National Tsing Hua University

Singe-Electron Transistor (SET) is considered as a promising candidate of low-power devices for replace-

ment or co-existence with Complementary Metal-Oxide-Semiconductor (CMOS) transistors/circuits. In this

work, we propose a diagnosis approach for SET array under a more generalized defect model. With the more

generalized defect model, the diagnosis approach will become more practical but complicated. We conducted

experiments on a set of SET arrays with different dimensions and defect rates. The experimental results show

that our approach only has 3.8% false-negative rate and 0.7% misjudged-category rate on average without re-

porting any false-positive edge when the defect rate is 4%. Therefore, the proposed diagnosis approach can

diagnose the defective SET arrays and elevate the reliability of the SET arrays in the synthesis flow.

CCS Concepts: • Hardware → Single electron devices;

Additional Key Words and Phrases: Single-electron transistor array, diagnosis, generalized defect model,

clustering-defect

ACM Reference format:

Chia-Cheng Wu, Yi-Hsiang Hu, Chia-Chun Lin, Yung-Chih Chen, Juinn-Dar Huang, and Chun-Yao Wang.

2021. Diagnosis for Reconfigurable Single-Electron Transistor Arrays with a More Generalized Defect Model.

J. Emerg. Technol. Comput. Syst. 17, 2, Article 15 (January 2021), 23 pages.

https://doi.org/10.1145/3444751

1 INTRODUCTION

Reducing power consumption in Complementary Metal-Oxide-Semiconductor (CMOS) circuits
has been considered as one of the main challenges to meeting Moore’s Law. To deal with this
issue, many emerging low-power devices have been proposed. Among them, some demonstrations

This work is supported in part by the Ministry of Science and Technology of Taiwan under MOST 107-2221-E-155-046,

MOST 108-2221-E-155-047, MOST 106-2221-E-007-111-MY3 and MOST 108-2218-E-007-061.

Authors’ addresses: C.-C. Wu, C.-C. Lin, and C.-Y. Wang, Department of Computer Science, National Tsing Hua Uni-

versity, Hsinchu, Taiwan 30013; emails: orange392817@gmail.com, chiachunlin@gapp.nthu.edu.tw, wcyao@cs.nthu.edu.

tw; Y.-H. Hu and J.-D. Huang, Department of Electronics Engineering and the Institute of Electronics, National Chiao Tung

University, Hsinchu, Taiwan 30013; emails: p8306271636@gmail.com, jdhuang@g2.nctu.edu.tw; Y.-C. Chen, Department

of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan 32003; email: ycchen.cse@saturn.yzu.edu.tw.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1550-4832/2021/01-ART15 $15.00

https://doi.org/10.1145/3444751

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

https://doi.org/10.1145/3444751
mailto:permissions@acm.org
https://doi.org/10.1145/3444751

15:2 C.-C. Wu et al.

of Singe-Electron Transistor (SET) operations at room temperature proved that SET devices can
be the promising candidate for replacement or co-existence with CMOS transistors/circuits in the
future [Liu et al. 2015b, 2011; Postma et al. 2001; Tan et al. 2003; Zhuang et al. 1998].

Since only a few electrons are involved in the switching process of the SET operations, SETs
suffer from low transconductance such that CMOS-based logic architecture is not applicable. To
this end, a Binary Decision Diagram (BDD)-based platform was proposed in Asahi et al. [1997] to
implement logic functions with SET devices. With this BDD-based platform, any Boolean function
can be mapped onto an SET array.

However, the BDD-based SET arrays in Asahi et al. [1997] are not amendable. If there exists a
defective nanowire segment or SET device in the array, the SET array cannot achieve its function
and the entire circuit becomes useless. This causes a low yield of SET arrays since nanowires
and nanodevices have a high defect rate. Fortunately, a reconfigurable SET array was proposed to
improve the reliability and increase the flexibility of the SETs [Eachempati et al. 2008]. Such flexible
reconfigurable SET arrays promote the research of synthesis and verification of SET arrays [Chen
et al. 2011, 2013, 2014, 2015; Chiang et al. 2013; Liu et al. 2014, 2015a; Zhao et al. 2014]. Although
these works were effective, they assumed that the SET arrays are defect-free. Therefore, these
approaches might fail once the SET arrays are defective. As a result, a defect-aware synthesis
algorithm was proposed in Huang et al. [2015]. This method successfully detoured or reused the
defects for mapping a function onto a defective SET array.

The previous work in Huang et al. [2015] assumed that all the defect information, including the
defect types and locations, has been obtained before mapping. Unfortunately, this assumption is
optimistic. Since defects on the SET arrays can affect the mapping result, it is important to have a
diagnosis algorithm to recognize the defects in a defective SET array before mapping. Therefore,
the first diagnosis approach to identify the defects in a reconfigurable SET array was proposed
in Huang et al. [2016]. This diagnosis algorithm used a diagnosis sequence, which is composed
of input patterns and configurations, to diagnose an SET array effectively. Since the diagnosis
sequence is fixed, the diagnosis process only terminates when the entire SET array is traversed
completely. This diagnosis approach is considered as a static diagnosis approach. Since this static
approach spent a lot of redundant efforts on the part that has been identified, it is inefficient. To
improve the efficiency of the diagnosis process, a dynamic diagnosis approach was proposed in
Li et al. [2017]. The dynamic approach adjusts the diagnosis sequence based on the feedback of
its previous diagnosis process. This approach can achieve 100% coverage as well while spending
much less CPU time than the static approach.

However, these two previous diagnosis methods [Huang et al. 2016; Li et al. 2017] have some
optimistic assumptions about the defect distribution, i.e., (1) open defects and short defects do not
occur on the two edges of a node device simultaneously; (2) two defective nodes are not adjacent
to each other. When the size of a SET node becomes smaller, these two assumptions are not rea-
sonable. This is because the size of a particle might be larger than an SET node such that adjacent
nodes could be defective simultaneously. Therefore, in this work we allow that defective nodes
could be adjacent and clustered together to form a defective area in an SET array. We call such
defective area a clustering-defect, which will be further discussed in Section 2.

In this work, we propose a diagnosis approach for SET array under a more generalized defect
model, i.e., a clustering-defect is possible. With the more generalized defect model, the diagnosis
approach will become more practical but complicated. We conducted experiments on a set of SET
arrays with different dimensions. The experimental results show that our approach can achieve
3.8% false-negative rate and 0.7% misjudged-category rate on average without reporting any false-
positive edge when the defect rate is 4%.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:3

Fig. 1. (a) Physical architecture of a reconfigurable SET array [Chen et al. 2014]. (b) Operating modes.
(c) The symmetric fabric architecture for input wiring.

Fig. 2. (a) The structure of a reconfigurable SET device [Liu et al. 2011]. (b) The formulations of wrap-around
Schottky split gates and the top control gate [Eachempati et al. 2008].

The rest of the article is organized as follows. Section 2 describes the background of SET arrays.
Section 3 presents the proposed diagnosis approach for defective SET arrays. Section 4 shows the
experimental results, and Section 5 concludes the work.

2 PRELIMINARIES

2.1 Reconfigurable SET Array

The structure of the reconfigurable SET array in Chen et al. [2014] can be divided into three layers
as shown in Figure 1(a). The three layers are the device layer, the configuration layer, and the input
signal layer from the bottom to the top of the structure, respectively. The device layer is composed
of the wrap gate SETs to form a hexagonal nanowire network. The configuration layer determines
the operation modes of each SET node, which has two edges corresponding to two SETs. The input
signal layer is an interface between the input signals and the SET nodes.

Figure 2 [Eachempati et al. 2008; Liu et al. 2011] illustrates the structure of a wrap gate SET
in the device layer. A pair of Schottky gates, called split gates, are wrapped around the fin that
connects the source and drain, and the top control gate is built upon the split gates. The split gates
are connected to the configuration layer such that a voltage bias on the split gates sets the SET
nodes in three operation modes: (1) active; (2) open; and (3) short, as shown in Figure 1(b). In the
active mode, the voltage bias of the split gates is altered to make the tunneling resistance of the
source and drain junctions exceed the resistance quantum. In the open mode, the split gate bias is
adjusted to a sufficiently negative value to encroach and pinch off the nanodot island completely
from both sides of depletion regions. On the contrary, in the short mode, a large positive split gate

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:4 C.-C. Wu et al.

Fig. 3. (a) SET array. (b) Example of a ⊕ b. (c) Simplified diamond-shaped network of a ⊕ b [Chen et al. 2011].

bias is adopted to reduce the tunneling resistance significantly. In other words, the device behaves
as a near ohmic conductor.

The top control gate of the wrapped gate SET is connected to the input layer of an SET array.
When an SET node is in the active mode, the corresponding input signal controls the dot potential
to block or permit electrons tunneling. Due to the limitation of SET array structure, the SET nodes
in the same row are controlled by the same input signal.

A reconfigurable SET array can be represented as a hexagonal network as shown in Figure 3(a).
At its bottom, there are current sources, represented as 1, while a current detector, which is at the
top of it and is considered as the output of the SET array, measures the current coming from the
current sources. When the electrons from the current source are detected by the current detector,
the output value is 1; otherwise, it is 0.

Each pair of edges, a left-sloping edge and a right-sloping edge, represents an SET node and can
be configured as high, low, short, or open. When an SET node is in the active mode, the corre-
sponding pair of edges is (high, low) or (low, high). The current transports through the high edge
when the input to the SET node is logic 1, and through the low edge when logic 0. When an SET
node is in the short (open) mode, both edges are short (open) to represent electrical short (open).
There are connections, which can be configured as short (open) for connection (disconnection),
between the current sources and the SET array. Figure 3(b) is an example of an implementation of
a ⊕ b on an SET array. The output value will be 1 if the input pattern is either (ab = 01) or (ab = 10).
For the other input patterns (ab = 00 or 11), the output value will be 0. Figure 3(c) is a simplified
version of Figure 3(b) by removing the vertical edge of the hexagons, since they are electrically
short. In the rest of this article, only the sloping edges will be shown.

2.2 Symmetric Fabric Constraint

The symmetric fabric constraint proposed in Eachempati et al. [2008] was widely adopted in the
related works for reducing the number of input wires, which are used to configure the node devices.
The symmetric fabric constraint confines the configuration of an SET node to be only one of (high,
low), (low, high), (short, short), or (open, open) as shown in Figure 1(c). Furthermore, the (high,
low) and (low, high) configurations are not allowed to appear in the same row.

In this article, we only use the configuration of (high, low) for a node in the active mode for the
ease of discussion since the determination for a node device to be configured either (high, low) or
(low, high) is independent of the proposed diagnosis algorithm.

2.3 Defect Model

Three types of defects, single-stuck-at-open, double-stuck-at-open, and single-stuck-at-short,
which are used in the previous works [Huang et al. 2016; Li et al. 2017], are considered in this
work as well. Figure 4 illustrates the representations of the three defect types. If a node device is

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:5

Fig. 4. The fabric representations of the three types of failures [Huang et al. 2015].

Fig. 5. (a) The first distribution of clustering-defect. (b) The second distribution of clustering-defect. (c) The
first distribution of clustering-defect with four D-short edges.

defective, at least one of the edges of the node cannot be changed by a configuration. For exam-
ple, a double-stuck-at-open node is always open and blocks the current from passing through it
regardless of the configuration and the input value. The connections between the SET array and
the current sources could be also defective.

In addition to these three types of defects, we also consider a new condition for the defective
nodes in an SET array. When a particle, which is larger than an SET node, falls on the SET array,
it could cause multiple adjacent nodes defective simultaneously. We name such defective nodes a
clustering-defect.

The detailed defect model of a clustering-defect is as follows: (1) a clustering-defect consists
of four adjacent defective edges, which are distributed as shown in either Figure 5(a) or (b); (2)
each edge of a clustering-defect can be either stuck-at-open (D-open) or stuck-at-short (D-short);
(3) the defective edges of a clustering-defect do not have to be the same defect-type. Figure 5(c)
is an example of a clustering-defect with four D-short under the distribution of Figure 5(a). How-
ever, since this clustering-defect in Figure 5(c) will cause a multiple-path conduction, which is not
allowed in an SET array due to the property of low transconductance, this defect is considered as
a D-open in the analysis.

2.4 Assumption of Defect Distribution

Since an SET array is more vulnerable than the CMOS circuits, its defect rate could be as high as
2% = 20,000ppm. The previous works [Huang et al. 2016; Li et al. 2017] considered that the distri-
bution of defects could be quite sparse even with such a high defect rate. Therefore, they adopted
two constraints about defect distributions. First, D-open and D-short do not occur on a node device
simultaneously. Second, once a node is defective, its six adjacent nodes are defect-free. Figure 6(a)
shows an example of defective SET array with the above constraints. The diagnosis algorithm can
be easily designed with such constraints. However, the adjacent defective nodes could actually
exist in the SET array as mentioned. Once adjacent defects occur on an SET array, the previous
diagnosis approaches in [Huang et al. 2016; Li et al. 2017] cannot deal with them. As a result, to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:6 C.-C. Wu et al.

Fig. 6. (a) Defect distribution constraint in Huang et al. [2016] and Li et al. [2017]. (b) Defective SET ar-
ray without any constraint. (c) Three adjacent defective edges. (d) A “larger” defect involving four adjacent
defective edges and a clustering-defect.

enhance the SET diagnosis approach comprehensively, we remove these defect distribution con-
straints in this article. An example of defective SET array in this work is as shown in Figure 6(b),
where a clustering-defect and adjacent defective nodes are presented.

In Section 2.3, we assume that a clustering-defect affects exactly four SET edges with two distri-
butions. However, the number of SET edges affected by a particle could be more or fewer than four
edges in practice. Since we do not have any constraint about defect distribution in this work, for
the case that a defect involves with fewer than four defective edges, this defect can be represented
by two or three adjacent defective edges. On the other hand, if there exist more than four adja-
cent defective edges for a “larger” defect, it can be formed by adjacent multiple defective edges or
adjacent clustering-defects. Figure 6(c) and (d) illustrate the examples of three adjacent defective
edges and eight adjacent defective edges, respectively.

3 DIAGNOSIS APPROACH

3.1 Overview

Since the functionality of a reconfigurable SET array is represented by both configurations and in-
put patterns, the diagnosis approaches for traditional Boolean circuits in Huang and Cheng [1999],
Kautz [1968], Liaw et al. [1990], and Veneris and Hajj [1999] are not applicable for the SET array
diagnosis. In this article, a node consisting of a pair of edges can be configured as one of (high,
low), (short, short), or (open, open). The diagnosis cost is the amount of the configurations and in-
put patterns [Li et al. 2017] since they are strongly correlated with the time spent for the diagnosis
procedure. Therefore, our approach will determine a diagnosis sequence to minimize the cost.

The problem formulation of this work is as follows: Given an H (height) ×W (width) defective
SET array, our goal is to identify the locations and the types of defects such that the diagnosis cost
is minimized.

The proposed diagnosis approach contains two stages:

(1) Vertical path diagnosis.

(2) Horizontal path diagnosis.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:7

We will elaborate the details of them in Sections 3.2 and 3.3, respectively.
Before elaborating the details of these two stages, we summarize three ideas we used in defect

identification.

(1) For an edge involved in a conducting path with a configuration from the current source to

the current detector, we change the configurations of the corresponding node to a new con-

figuration of (open, open). If the path becomes nonconductive, the edge is defect-free since it

can be successfully configured as short and open. Otherwise, the edge is marked as a D-short

candidate.

(2) When a D-short candidate is not adjacent to any other D-short candidate, the D-short candi-

date edge is confirmed as a D-short edge since there is no detoured path to bypass the current

from this D-short candidate.

(3) An edge can be confirmed as a D-open edge if and only if all possible paths involving the edge

are not conductive. To reduce the computational complexity, we label an edge as a D-open edge

when it is not involved in any conductive path of our diagnosis procedure.

We use an example in Figure 7 to explain these ideas in defect identification. Figure 7(a) is a
defect map of an SET array, and the locations as well as types of defects are unknown to the
diagnosis algorithm. All the SET node devices are set to (open, open) in the beginning. According
to our first idea, we heuristically search for a conducting path by both configuring SET nodes and
applying an input pattern. Once a conducting path is found with the corresponding configuration
and input pattern as shown in Figure 7(b), we reconfigure one node of this path as (open, open)
individually as shown in Figures 7(c)–(g). This reconfiguration of (open, open) to an edge in the
conducting path is to examine whether this edge is actually involved in the conducting path or
not. If the path becomes nonconductive after this reconfiguration, the edge must be involved in the
original conducting path such that it is not a D-open edge. Furthermore, the edge is not a D-short
edge either since it can be reconfigured to cause the path to become nonconductive. As a result, the
edge is defect-free due to the absence of D-open and D-short defects. For example, Figure 7(b) is a
conducting path we found. The path becomes nonconductive (output is 0) after reconfiguring the
connection at the bottom of SET array as open as shown in Figure 7(c). Therefore, this connection
is defect-free (represented in green). Next, the left edge of the node at (1, 5) is identified as defect-
free in the same way as shown in Figure 7(d). In Figure 7(e), the right edge of the node at (0, 4)
is identified as D-short candidate (represented in yellow) since the path is still conductive after
reconfiguring as (open, open). The result of this conducting path after diagnosing all the edges is
shown in Figure 7(g).

However, if there exist defects blocking the current of a path, we cannot diagnose the path.
Therefore, the main concept of our approach is to configure a conducting path including an edge
that needs to be diagnosed. If the configured path is nonconductive, we use the identified defect-
free edges or D-short candidates to configure another conducting path for diagnosing the part of
the nonconducting path. Figure 7(h) is the result of the vertical path diagnosis in the first stage.
All the edges in this SET array have been identified as defect-free, D-short, or D-open candidates.
Then, we exploit this information to configure other horizontal paths and diagnose more edges in
the horizontal path diagnosis. The final result of the first stage is shown in Figure 7(i).

In the second diagnosis stage, we configure other paths to confirm the behavior of adjacent
D-short candidates. According to our second idea, we can confirm a D-short candidate as a D-
short edge when there are no other adjacent D-short candidates. This is because the path is still
conductive after the corresponding node of the edge is reconfigured as (open, open), and there is
no other possible path detouring the current. For example, the right edge of the node at (0, 4) in
Figure 7(i) can be confirmed as a D-short edge. On the other hand, since both edges of the node

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:8 C.-C. Wu et al.

Fig. 7. Example for the three ideas of identifying defects.

at (1, 1), the right edge of the node at (0, 2), and the left edge of the node at (2, 2) are D-short
candidates and clustered together, additional paths are needed for diagnosing them. When the
right edge of the node at (0, 2), which is actually a D-open, is under diagnosed, the current is
blocked from passing through the edge as shown in Figure 7(f). However, the current passes to the
current detector through the left edge of the node at (2, 2) and the right edge of the node at (1, 1)
since they are D-short edges. Therefore, the right edge of the node at (0, 2) is labeled as a D-short
candidate in Figure 7(f). Nevertheless, in Figure 7(j), another path will be configured to diagnose
the right edge of the node at (0, 2), and it is nonconductive. We can identify this edge as a D-open
edge since other edges in the configured path have been identified as defect-free or D-short edges,
and this edge is the only one that can block the current. The left edge of the node at (1, 1) can be
identified as a D-open in the same way. The final diagnosis result for this defective SET array is
shown in Figure 7(k).

The boundary nodes, which have only one edge, are considered as useless nodes since a complete
SET node consists of a pair of edges. The useless nodes cannot be used in synthesis and will be

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:9

Fig. 8. Example of undiagnosable edges and useless nodes in an SET array.

discarded. Furthermore, there are some edges that cannot be involved in any conducting path
since there is no complete node below them to build a conducting path. We name such edges
undiagnosable edges. Figure 8 illustrates an example for useless nodes and undiagnosable edges.
The undiagnosable edges, represented in gray, are unable to be included in any conducting path
since they connect to useless nodes, which are represented in black. The undiagnosable edges
cannot be used in synthesis as well.

3.2 Vertical Path Diagnosis

3.2.1 Overall Algorithm of Vertical Path Diagnosis. The overall algorithm of vertical path diag-
nosis is shown in Algorithm 1. In the vertical path diagnosis, all the edges of an SET array, except
the useless nodes and the undiagnosable edges, will be initialized as undiagnosed edges and later
included in a path for diagnosis. We build one path at a time from the leftmost column to the
rightmost column of the SET array. The edges in the same column are used to build a vertical
path, and the nodes at row of y = 0 are configured as (short, short) and (high, low) for connecting
the vertical paths to the current detector. When building a new path, some nodes that have been
already configured as (high, low) or (short, short) for the last path can be reused in the present
path without any additional overhead. If a configured path is conductive, we mark the path as a
conducting path and individually reconfigure each node of the path as (open, open) to examine
the corresponding edge as shown in lines 4–5 in Algorithm 1; otherwise, we mark the path as a
nonconducting path, label each unknown edge of this path as D-open candidates (represented in
orange), and adjust the previous path, if it is conductive, to further diagnose the current path as
shown in lines 6–8 in Algorithm 1.

3.2.2 Vertical Path Diagnosis Demonstration. We use the same defective SET array as shown in
Section 3.1 to demonstrate the process of vertical path diagnosis. Figure 9(a) shows that path 1©
consists of the edges at the first column, and the node at (-2, 0) and the node at (0, 0) are configured
as (short, short) and (high, low), respectively, to connect path 1© to the current detector of the SET
array. Since both edges of the node at (-2, 0) are D-open edges, path 1© is nonconductive.

Therefore, path 1© is marked as a nonconducting path (path index 1© in orange), and the edges of
this path are labeled as D-open candidates. Figure 9(b) shows path 2©, and we observed that some

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:10 C.-C. Wu et al.

Fig. 9. Example for demonstrating the ideas of vertical path diagnosis.

nodes included in path 2© have been configured as (high, low) for path 1© such that we can reuse
them without any reconfiguration. The remaining nodes of path 1© that are not included in path
2© are reconfigured as (open, open). We then assign the corresponding input patterns to stimulate

path 2©, which is also a nonconducting path. The third path is built in the same way, but it is a
conducting path. Thus, we mark this path a conducting path (path index 3© in green) as shown in
Figure 9(c). Then, we diagnose all the edges of this path and label them as shown in Figure 9(d).

We observed that some defect-free or D-short edges of nonconducting paths are labeled as
D-open candidates, which is incorrect. The edges with these incorrect labels could be further
re-labeled when they are included in a conducting path. As a result, during the vertical path
diagnosis, we will deliberately adjust the conducting paths for diagnosing a portion of a noncon-
ducting path. Specifically, when the present path (previous path) is marked as a nonconducting
path, we will check if the previous path (present path) is a conducting path. For the nonconducting
paths that are not adjacent to any conducting path, we will handle them in the stage of horizontal
path diagnosis, which will be discussed in Section 3.3. A conducting path will serve as a baseline
to build a new path containing a part of the nonconducting path, called tested partial path. If the
new path is still conductive, we can diagnose the edges in the original nonconducting path and
update the labels on them. However, since the locations of the defects in the nonconducting path
are unknown, we use the concept of Binary Search to shrink the range of defect locations.

For example, when all the edges of path 3© have been diagnosed, we serve path 3© as the baseline
to diagnose path 2© since path 2© is a nonconducting path. Since the top D-open candidate and
the bottom D-open candidate of path 2© are at (-2, 0) and (-3, 5), respectively, we set the row of
y = 0 as the top row and the row of y = 5 as the bottom row. Furthermore, we set the row of y =
3 as the middle row dividing path 2© into two halves. However, if the edge of path 2© at y = 3

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:11

ALGORITHM 1: Vertical path diagnosis

Input: an n ×m SET array. // height n, width m

Output: a vertical-diagnosed SET array map.

1 Initialize all the SET edges as undiagnosed edges.

for i = 1: m //start from the leftmost vertical path to the rightmost one

2 Configure a vertical path connecting current sources to the current detector.

3 Record the configuration of path i.

if path i is conductive

4 Label path i as a conducting path.

5 Diagnose each edge by defect identification idea (1). // as mentioned in Section 3.1

end

else

6 Label path i as a nonconducting path.

7 Label un-diagnosed edges of path i as D-open candidates.

if i � 1 and path i-1 is conductive

8 adjust path i-1 to test D-open candidates of path i.

end

end

endfor

cannot connect to path 3©, we change the middle row to the lower one, i.e., y = 4. We consider
the second half of path 2©, i.e., the left edge of the node at (-2, 4) and the right edge of the node
at (-3, 5), as the tested partial path (represented by the white line) currently. Next, we configure a
new path consisting of this tested partial path and the edges of path 3© that are above the middle
row. Since this new path is conductive (output is 1) as shown in Figure 9(e), the edges in the tested
partial path can be identified as defect-free edges or D-short candidates after reconfiguring the
corresponding nodes as (open, open). As we discussed in Section 3.1, if the new path becomes
nonconductive after the reconfiguration of (open, open) for an edge in the tested partial path, this
edge is re-labeled as a defect-free edge; otherwise, this edge is re-labeled as a D-short candidate.

Next, the bottom row is set to the row of y = 4, and the middle row is set to the row of y = 2. A
new path is built in the same way as shown in Figure 9(f). Since the new path is also a conducting
path, the tested partial path can be identified and re-labeled. Last, the bottom row is set to the row
of y= 2, and the middle row is set to the row of y= 1. Since the edge in the tested partial path of path
2© is not capable of building a complete path with path 3©, we include the edges between the top

row (y = 0) and the bottom row (y = 2) of path 2© into the tested partial path and build a new path
as shown in Figure 9(g). However, this path is a nonconducting path, and we cannot diagnose the
D-open candidates in the tested partial path. Furthermore, since the remaining D-open candidates
in path 2© have been included in the tested partial path, we stop diagnosing path 2© and proceed
to the next vertical path, path 4©. Figure 9(h) shows a special case of a nonconducting path, path
7©, consisting of defect-free edges only. However, both edges of the node at (2, 0) and the left edge

of the node at (3, 1) of the configured path cause a mutiple-path conduction with a D-short edge of
the node at (1, 1). As mentioned in Section 2.3, if a path is involved in a multiple-path conduction,
it is a nonconducting path.

As a result, path 7© is marked as a nonconducting path. However, path 7© can be diagnosed
with the assistance of path 6©, which is a conducting path as shown in Figure 9(i). The final result
of the vertical path diagnosis is shown in Figure 9(j). The green grids represent defect-free edges,
yellow grids represent D-short candidates, and orange grids represent D-open candidates.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:12 C.-C. Wu et al.

3.3 Horizontal Path Diagnosis

3.3.1 Overall Algorithm of Horizontal Path Diagnosis. When the vertical path diagnosis is fin-
ished, some defect-free edges might be still diagnosed as D-open candidates. This is because the
current passing through these defect-free edges was unexpectedly blocked by other defects. There-
fore, in the horizontal path diagnosis, we will build the conducting paths horizontally to configure
new paths containing mislabeled edges. The newly configured path is composed of edges from the
conducting paths and the defect candidates in the nonconducting paths. Once a newly configured
path is conductive, we can further correct the labels on D-open candidates in this path. In the
following paragraphs, we will introduce the details of the horizontal path diagnosis.

The overall algorithm of horizontal path diagnosis is shown in Algorithm 2. First, we build up a
present diagnosis column, which contains adjacent nonconducting paths we are dealing with. For
example, in Figure 10(a), path 1© and path 2© will be included in a diagnosis column. If the present
diagnosis column contains all the paths in the SET array, this SET array is a useless array. If there
exists conducting paths adjacent to the present diagnosis column, the conducting path(s) will serve
as baseline(s) for diagnosing the present diagnosis column. We divide the horizontal path diagnosis
into two cases with respect to the number of baselines adjacent to the present diagnosis column:
Boundary case is with one baseline, and normal case is with two baselines. The algorithms dealing
with the boundary case and normal case are shown in lines 4–12 and lines 13–15 of Algorithm 2,
and will be explained in Section 3.3.2 and Section 3.3.3, respectively.

3.3.2 Boundary Case. For the boundary case, the present diagnosis column has only one base-
line adjacent to it. The baseline will be used to build a new path containing a tested partial path,
represented in white. The tested partial path consists of the present diagnosis column and two
edges called bridges. The edges in the bridges are configured as (short, short).

For example, the present diagnosis column composed of paths 1© and 2© is a boundary case
as shown in Figure 10(a). Path 3© serves as the baseline for this present diagnosis column. In the
beginning, we randomly select two rows at y = 2 and y = current sources as the bridges. The row
at y = 2 is connected to the nonconducting path, path 1©, with the baseline, path 3©, and the other
bridge directly connected to the current sources. Then, the edges over the upper bridge in path
3© connected to the current detector. Next, we configure the edges between the two bridges in

path 1©. Finally, the edges below the lower bridge in path 3© are configured to connect with the
current sources. However, since the lower bridge is at the current sources, there is no edge needed
to be configured. Since the new path is nonconductive as shown in Figure 10(b), we randomly
select another two rows as the bridges to build a new path in the same way. In our algorithm, we
set a parameter p to limit the number of trails to build the first conducting path for a boundary
case. If the number of configured paths for building the first conducting path is larger than p, we
terminate the diagnosis procedure for the present diagnosis column. In this example, we configure
the new bridge at the rows of y = 1 and y = 3, and the new path is built in the same way as shown
in Figure 10(c). Since this path is a conducting path, we can successfully identify the edges in the
tested partial path to correct their labels by reconfiguring the corresponding nodes as (open, open).
However, if both edges of a node are included in the tested partial path and labeled as D-open
candidates, it needs additional configurations and input patterns to identify its edges and correct
the labels. For example, in Figure 10(c), both edges of the node at (-3, 1) are D-open candidates
and involved in the tested partial path; we cannot identify whether each of these two edges is a
defect-free edge or D-short candidate by just reconfiguring the node as (open, open). Therefore,
we reconfigure this node as (high, low) and assign an input 0 to identify the left edge of this
node as shown in Figure 10(d). Since the path becomes nonconductive after the reconfiguration

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:13

Fig. 10. Example for demonstrating the ideas of horizontal path diagnosis.

with the input 0, the left edge is a defect-free edge.1 Next, we flip the input to identify the right
edge, and this edge is a defect-free edge since the path also becomes nonconductive as shown in
Figure 10(e).

After having the first conducting path for a boundary case, we shift one of the two bridges to
another row that contains defect candidates in the present diagnosis column to build a new path.

1The input 0 (1) allows the current passing through the right (left) edge and blocks the current from passing through the

left (right) edge of a node configured as (high, low). Therefore, if both edges are involved in a conducting path, we can

reconfigure this node as (high, low) and assign an input 0 (1) to identify the left (right) edge without changing the behavior

of the other edge.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:14 C.-C. Wu et al.

ALGORITHM 2: Horizontal path diagnosis

Input: an n ×m vertical-diagnosed SET array map and a trial count parameter p.// a

vertical-diagnosed array map and a user-defined parameter p for trial count constraint.

Output: a diagnosed SET array map.

1 Build up diagnosis columns. // diagnosis column consists of adjacent nonconducting paths

for each diagnosis column i

2 Find the nearest left conducting path a to the diagnosis column i.

3 Find the nearest right conducting path b to the diagnosis column i.

if only one of path a and path b exists // boundary case

4 Initialize trail count t = 0.

5 Set the conducting path a (or path b) as the baseline.

while t < p

6 Randomly select two rows as short bridges.

7 Configure a new path consisting of the two short bridges, the baseline, and the testing

partial path.

if configured path is nonconductive

8 t = t+1.

end

else

9 Diagnose defect candidates of the configured path.

while there exist untested defect candidates of the diagnosis column i

10 Shift one short bridge to cover new defect candidates.

if the newly configured path is conductive

11 Diagnose defect candidate of the configured path.

end

end

12 Finish the diagnosis procedure of the diagnosis column i. // Leave while loop

end

end

end

else if both path a and path b exist // normal case

for each D-open candidate j in the diagnosis column i

13 Select the row of D-open candidate j as a short bridge.

14 Configure a new path with partial path a, path b, and the short bridge.

if the configured path is conductive

15 Diagnose D-open candidate j by defect identification idea (1).

end

endfor

end

endfor

16 Set all the D-short candidates as D-short defects.

17 Set all the D-open candidates as D-open defects.

In this example, we shift the row of y = 3 to the row y = 4 as a new bridge, and the other bridge
is still at the row of y = 1. Then, we build a new path with these two bridges in the same way as
shown in Figure 10(f). The tested partial path of this new path contains D-open candidates. Since
this path is also conductive, the D-open candidates in the tested partial path can be identified. Next,
we shift the bridge in the row of y = 4 to y = 5 as a new path and build the next path as shown in

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:15

Figure 10(g). However, since the tested partial path contains no defect candidate, we skip this path
without any configuration. In Figure 10(h), we build a new path with the new bridge at current
sources. Since this path is nonconductive, the edge in the tested partial path cannot be identified.
Finally, we select a new combination of rows at y = 0 and y = 3 to construct the new bridges. The
new path built with these two bridges is also a nonconducting path as shown in Figure 10(i). Since
all the rows containing defect candidates in the present diagnosis column have been selected for
constructing the bridges, we terminate the diagnosis procedure for the present diagnosis column
and move to the next diagnosis column.

3.3.3 Normal Case. For the normal case, the present diagnosis column has two baselines. There-
fore, we can configure a bridge for connecting with these two baselines to build a new path. The
bridge needs to contain at least a defect candidate in the present diagnosis column.

For example, the present diagnosis column in Figure 10(j) consists of path 4© with two baselines,
paths 3© and 5©. In the beginning, we select the row of y = 3 to configure a bridge since this
row contains a D-open candidate in the present diagnosis column. The nodes in the bridge are
configured as (short, short). Next, since path 5© is closer to the current detector than path 3©, we
configure the nodes above the bridge in path 5© to connect the current detector with the bridge.
Then, we configure the nodes below the bridge in path 3© to connect the bridge with the current
sources. The new path is a conducting path, and the involved edges in the bridge are considered
as the tested partial path, represented in white, as shown in Figure 10(k). Therefore, the D-open
candidate of the node at (-1, 3) can be identified as a defect-free edge, and its label can be corrected.
Next, we reconstruct a new bridge at the row of y = 4 that also contains a D-open candidate and
build another path in the same way. However, this path is nonconductive as shown in Figure 10(j),
and the D-open candidate cannot be identified. Finally, we diagnose the last diagnosis column
composed of path 7© with two baselines, path 6© and path 8©, as shown in Figure 10(k). We build
a new path with a bridge at the row of y = 1 in the same way as shown in Figure 10(n). Since this
path is a conducting path, the D-open candidate in the tested partial path can be identified as a
defect-free edge.

The diagnosis procedure of horizontal path diagnosis is finished since all the diagnosis columns
in this example have been diagnosed. The final result of the horizontal path diagnosis is shown
in Figure 10(o). The green grids represent defect-free edges, yellow grids represent D-short candi-
dates, and orange grids represent D-open candidates.

3.4 Time Complexity Analysis

The complexity analyses of vertical path diagnosis and horizontal path diagnosis are as follows:
Given an n × m SET array

(1) Time complexity analysis of vertical path diagnosis:
(a) Configuring a vertical path i and testing if it is conductive need (n) configurations and

(1) pattern.
(b) If the path i is conductive:

i. We need (2n) configurations and (n) patterns to test each edge.
(c) If i � 1 and the path i is nonconductive:

i. If i � 1 and the path i-1 is conductive, we can use the concept of binary search and
adjust path i-1 to test path i. Therefore, we need (n) configurations to reconfigure
for testing edges of path i, and (1

2 n) patterns to test if these paths are conductive.
ii. Once a newly configured path is conductive, we need (2) configurations and (1)

pattern to test if an edge is defect-free.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:16 C.-C. Wu et al.

iii. The worst case is that every newly configured path is conductive. Therefore, we
need (2n) configurations and (n) patterns in total.

According to the analysis, we need (3n) configurations and (3
2 n) patterns to test a vertical

path in the worst case. Therefore, we need at most (m) × (3n) configurations and (m) ×
(3

2 n) patterns to finish the vertical path diagnosis.
(2) Time complexity analysis of horizontal path diagnosis:

(a) If the diagnosis column i is the boundary case:
i. If the baseline path is a boundary path, we need (n-3) configurations to configure

the three partial paths and (2m) configurations to configure two bridges.
ii. The worst case is that we conduct t trials to find the conducting paths. Therefore,

we need (t) × (2m+n-3) configurations and (t) patterns.
iii. Furthermore, if there exists a D-open candidate in each row of column i, we also

need (n) × (2m+2m) configurations and (n) × (m) patterns to shift the bridges and
test each D-open candidate of column i.

iv. We need [(t) × (2m+n-3) + (n) × (4m)] configurations and [(t) + (n) × (m)] patterns
in total in the worst case.

(b) If the diagnosis column i is the normal case:
i. The worst case is that the nearest left conducting path a is a left boundary path and

the right conducting path b is a right boundary path. We need (n-1) configurations
to configure two partial paths, (m) configurations to configure the short bridge,
and (1) pattern to test if the path is conductive.

ii. If the newly configured path is conductive, we need at most (2m) configurations
and (m) patterns to test the D-open candidates on the bridges.

iii. The worst case is that there exists a D-open candidate in each row of column i.
We need (n) × (2m+2m) configurations and (n) × (m) patterns to shift the bridges
and test each D-open candidate of column i.

iv. We need [m + (n-1) + n × (4m)] configurations and [(1) + (n) × (m)] patterns in
total in the worst case.

According to the analysis, the boundary case needs more configurations and patterns
to test a diagnosis column. There will be at most (1

2 m) diagnosis columns; therefore, we

need at most (1
2 m) × [(t) × (2m+n-3) + (n) × (4m)] configurations and (1

2 m) × [(t) + (n) ×
(m)] patterns to finish the horizontal path diagnosis.

In summary, we need at most (m) × (3n) + (1
2 m) × [(t) × (2m+n-3) + (n) × (4m)] configurations

and (m) × (3
2 n) + (1

2 m) × [(t) + (n) × (m)] patterns, i.e., O(m2t + mtn + m2n) configurations and

O(mt + nm2) patterns in the worst case for the proposed diagnosis algorithm. If we assume that
m ≈ n and t = Cn

2 ≈ n2, we will need O(n4) configurations and O(n3) patterns for the worst case.
However, we know that the time complexity is for the worst cases. From the experimental re-

sults, the required CPU time for running our algorithm is not much. On the other hand, from the
physical implementation suggestion in the previous work [Ho et al. 2016], the SET array size is
limited to 10 × 50. Thus, the high time complexity of the proposed diagnosis algorithm is not a
concern in practice.

4 EXPERIMENTAL RESULTS

4.1 Environmental Setting of Experiments

The proposed algorithm was implemented in C++ language and the experiments were conducted
on an Intel Xeon® E5-2643 CentOS 5.11 platform with 128-GBytes memory. We conducted two

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:17

Table 1. The Model Comparison between the Proposed Diagnosis Approach
and the State-of-the-Art [Li et al. 2017]

Our model [Li et al. 2017]
Defect model Allow adjacent defects Not allow adjacent defects
Defect types D-open/D-short/Clustering-defect D-open/D-short

experiments in this article with different sizes of defective SET arrays. We individually applied the
algorithmin Li et al. [2017] and ours for each defective SET array we generated.

Note that, based on the original model in Li et al. [2017], without adjacent defects, its algorithm
could always find the new conducting path based on a baseline. However, the program in Li et al.
[2017] would be trapped into an infinite loop when diagnosing some defective SET arrays with
adjacent defects. Therefore, we have to re-implement the program based on the algorithm in Li
et al. [2017], and terminate the diagnosis process when it cannot find a new conducting path.

To show the effectiveness of the proposed algorithm, we inject defects into the SET arrays for the
experiments. The experimental environment is software-based with computer simulation. Hence,
the experiments can be considered as a logical model at an algorithmic level. From the related
study [Ho et al. 2016], the number of inputs in an SET array is limited to the height constraint of
SET arrays. The height constraint was suggested as 10. Therefore, we conducted the experiments
for SET arrays with different sizes from 10×10 to 50×50.

The first experiment shows the number of useless defective SET arrays our algorithm identi-
fied, and that of SET arrays having current detectors blocked by D-open edges or a multiple-path
conduction. The second experiment demonstrates the effectiveness and the efficiency of our algo-
rithm. In the experiments, we set the defect rate as 2%, 3%, and 4% for showing the impact of defect
rates on the diagnosis results. The defect rate is calculated as |defective edge| / |total edge|. First,
we calculated the total number of defective edges, |defective edge|, of a defective SET array accord-
ing to the defect rate and its size. Then, we randomly selected SET nodes to be defective nodes and
the number of these nodes were equal to the |defective edge|. The defective nodes were randomly
determined as single-stuck-at-open, double-stuck-at-open, single-stuck-at-short, or clustering-defect.
If a node was determined as clustering-defect, two possible combinations of its two neighboring
edges will be selected as defective edges. For example, assume that in Figure 5, the node at (0, 2)
is set as a clustering-defect. The first combination is to select the left edge of the lower left neigh-
boring node and the right edge of the lower right neighboring node to form a clustering-defect
as shown in Figure 5(a). The other combination is to select the right edge of the upper left neigh-
boring node and the left edge of the upper right neighboring node to form a clustering-defect as
shown in Figure 5(b). Each one of the four defective edges in this clustering-defect will be randomly
determined as D-open or D-short.

Before we explain the experimental results, we compare the defect model and the defect type
with the state-of-the-art [Li et al. 2017]. The comparison results are summarized in Table 1.
Locations of defects in both works were selected randomly. Adjacent defects were not allowed
in the defective SET array in Li et al. [2017] due to its assumption. However, the adjacent defects
were allowed in our model. It means that our model can diagnose a defective SET array despite
the defect distribution. Furthermore, we added the clustering-defect as one of the defect types.
Once an SET node is selected as having a clustering-defect in an SET array, it will have four
adjacent defective edges as we discussed in Section 2.3.

4.2 Experimental Results of Identifying Useless SET Arrays

In the first experiment, we randomly generated a defective SET array and performed our algorithm.
We terminated the algorithm after the vertical path diagnosis stage, and reported if the SET array

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:18 C.-C. Wu et al.

Table 2. The Experimental Results of Identifying Useless SET Arrays

H W Def.(%) |Useless| |Blocked| H W Def.(%) |Useless| |Blocked|
10 10 2 0 0 20 40 2 2 2

3 0 0 3 2 2
4 0 0 4 2 2

15 2 0 0 50 2 0 0
3 0 0 3 0 0
4 0 0 4 0 0

20 2 0 0 25 25 2 0 0
3 0 0 3 0 0
4 0 0 4 1 1

30 2 0 0 30 2 0 0
3 0 0 3 0 0
4 0 0 4 0 0

40 2 0 0 40 2 0 0
3 1 1 3 0 0
4 1 1 4 0 0

50 2 0 0 50 2 0 0
3 0 0 3 0 0
4 1 1 4 0 0

15 15 2 0 0 30 30 2 1 1
3 0 0 3 2 2
4 0 0 4 2 2

20 2 0 0 40 2 1 1
3 0 0 3 1 1
4 0 0 4 1 1

30 2 1 1 50 2 0 0
3 1 1 3 0 0
4 1 1 4 0 0

40 2 0 0 40 40 2 2 2
3 0 0 3 3 3
4 0 0 4 3 3

50 2 0 0 50 2 0 0
3 2 2 3 0 0
4 3 3 4 0 0

20 20 2 2 2 50 50 2 0 0
3 2 2 3 0 0
4 2 2 4 3 3

30 2 1 1
3 1 1
4 2 2

is useless. Then, we examined each defect map to see if its current detector was blocked. We
conducted 100 runs of experiments and the results are summarized in Table 2. In Table 2, Columns
1 and 2 list the dimension of the defective SET arrays. Column 3 lists the different defect (Def.)
rates of the SET arrays. Column 4 lists the number of useless SET arrays reported by our algorithm.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:19

Table 3. Experimental Results of the Proposed Diagnosis Approach
and the State-of-the-Art [Li et al. 2017] with Defect Rate 2%

H W Re. Def. Ours [Li et al. 2017]

F-neg.(%) Misjud.(%) |Config. | |Pat. | |F-pos. edg | F-neg.(%) Misjud.(%) |Config. | |Pat. | |F-pos. edg |
10 10 3.0 0.6 0.3 290.7 91.3 0 5.0 0.5 440.0 161.5 3

15 2.2 0.5 0.2 440.9 134.6 0 5.3 0.3 822.2 280.0 4

20 3.2 0.9 0.3 638.4 205.4 0 12.0 0.5 1,100.7 370.5 6

30 3.0 0.9 0.2 975.8 316.2 0 17.5 0.4 1,592.3 489.7 20

40 2.9 1.7 0.2 1,344.7 429.5 0 23.2 0.4 2,098.8 606.5 17

50 2.8 1.3 0.2 1,703.8 542.0 0 26.5 0.4 2,562.9 703.9 15

20 20 3.2 0.8 0.3 1,364.8 415.2 0 10.6 0.6 3,891.6 786.9 7

30 3.1 0.9 0.3 2,261.7 642.1 0 13.0 0.5 6,097.5 1,153.7 13

40 3.1 1.0 0.3 3,044.1 863.2 0 18.2 0.5 8,022.2 1,500.7 18

50 2.9 1.3 0.3 3,883.6 1,089.7 0 25.4 0.5 9,067.0 1,652.2 13

30 30 3.1 1.5 0.4 3,675.3 964.7 0 16.7 0.6 13,745.1 1,773.0 20

40 3.0 1.3 0.3 5,008.7 1,313.4 0 20.6 0.5 19,561.0 2,371.9 22

50 2.9 1.3 0.3 6,286.6 1,652.3 0 20.4 0.4 23,273.3 2,909.0 25

40 40 3.1 1.3 0.3 7,410.9 1,816.8 0 23.2 0.5 35,192.7 3,209.7 25

50 3.0 1.3 0.3 8,875.9 2,240.7 0 24.2 0.5 43,725.3 3,983.8 36

50 50 3.1 1.8 0.3 11,871.2 2,854.2 0 27.9 0.6 71,307.5 4,990.4 43

Average - 2.98 1.15 0.28 3,692.3 973.3 0 18.11 0.48 15,156.3 1,684 17.9

Ratios - - 0.06 0.58 0.24 0.58 - 1 1 1 1 -

Column 5 lists the number of SET arrays where the current detector is blocked. Columns 6–10 are
the same results as Columns 1–5.

For example, in the SET array of 40×40 with defect rate of 2%, there are 2 out of 100 SET arrays
reported as useless. There are exactly two SET arrays having blocked the current detector. In fact,
we have verified that the blocked SET arrays are exactly the reported useless SET arrays, i.e., we
accurately reported the blocked SET arrays, which cannot be used for synthesizing any function
as useless SET arrays. In the first experiment, the runtime of verifying useless SET arrays for 100
defective SET arrays of each size was less than one second.

4.3 Experimental Results of Proposed Diagnosis Approach and the State-of-the-Art

In the second experiment, the defective SET arrays with different defect rates were generated for
each size of SET arrays. We excluded the mentioned SET arrays with blocked current detectors in
the experiments. We conducted 100 runs of experiments to obtain the average results and compared
the experimental results with the state-of-the-art [Li et al. 2017].

We break down the experimental results of the second experiment into Tables 3, 4, and 5 with 2%,
3%, and 4% defect rates, respectively. Columns 1 and 2 list the dimension of defective SET arrays,
and Columns 3 and the real defect (Re. Def.) rate are in the SET arrays. The real defect rate in the
SET arrays is higher than the defect rate we set since the injected defects include clustering-defects,
which affect three SET nodes (i.e., four edges) in the SET array. Columns 4–8 (9–13) show the
diagnosis results of our (the state-of-the-art [Li et al. 2017]) diagnosis approach. The results listed
in Columns 4–7 (9–12) are averaged over 100 runs of experiments for each dimension and defect
rate. Column 4 (9) lists the false-negative rate (F-neg.) representing the rate of the defect-free edges

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:20 C.-C. Wu et al.

Table 4. Experimental Results of the Proposed Diagnosis Approach and the State-of-the-Art
[Li et al. 2017] with Defect Rate 3%

H W Re. Def. Ours [Li et al. 2017]

F-neg.(%) Misjud.(%) |Config. | |Pat. | |F-pos. edg | F-neg.(%) Misjud.(%) |Config. | |Pat. | |F-pos. edg |
10 10 3.1 0.3 0.3 290.9 92.1 0 6.4 0.5 434.8 158.6 2

15 4.3 1.1 0.5 494.2 153.3 0 10.7 0.7 805.4 268.0 6

20 4.5 1.3 0.4 690.0 213.1 0 15.9 0.6 1,110.5 360.1 9

30 4.0 1.2 0.3 1,025.7 323.4 0 22.1 0.6 1,580.8 470.0 24

40 4.4 2.6 0.4 1,331.1 440.5 0 33.0 0.7 2,034.0 545.4 15

50 4.1 2.3 0.4 1,788.8 549.3 0 33.6 0.6 2,456.5 648.3 19

20 20 4.7 1.5 0.5 1,620.0 435.7 0 15.5 0.9 4,036.0 776.5 13

30 4.6 2.0 0.5 2,517.2 668.9 0 20.2 0.8 6,210.4 1,112.2 19

40 4.5 1.8 0.4 3,339.6 898.1 0 25.6 0.7 7,968.7 1,313.4 23

50 4.4 3.0 0.4 4,251.5 1,113.4 0 33.9 0.7 9,023.9 1,525.9 23

30 30 4.8 2.6 0.6 4,219.1 1,024.0 0 22.7 0.8 13,246.4 1,735.7 24

40 4.5 2.6 0.5 5,528.5 1,363.7 0 27.0 0.8 19,440.6 2,287.5 41

50 4.5 3.6 0.5 6,906.9 1,693.8 0 28.2 0.7 23,983.3 2,787.7 55

40 40 4.9 3.6 0.5 8,482.8 1,940.9 0 32.2 0.9 36,244.0 3,118.5 54

50 4.6 3.4 0.5 9,928.9 2,333.3 0 34.3 0.8 45,667.1 3,796.2 53

50 50 4.7 4.6 0.6 13,040.5 2,939.6 0 38.2 0.9 73,856.5 4,768.7 64

Average - 4.4 2.3 0.5 4,095.5 1,011.4 0 25.0 0.7 15,506.2 1,604.5 27.8

Ratios - - 0.92 0.71 0.26 0.63 - 1 1 1 1 -

Table 5. Experimental Results of the Proposed Diagnosis Approach and the State-of-the-Art
[Li et al. 2017] with Defect Rate 4%

H W Re. Def. Ours [Li et al. 2017]

F-neg.(%) Misjud.(%) |Config. | |Pat. | |F-pos. edg | F-neg.(%) Misjud.(%) |Config. | |Pat. | |F-pos. edg |
10 10 6.1 1.4 0.6 333.9 98.4 0 9.1 0.9 457.0 159.2 4

15 6.1 1.8 0.6 534.8 159.5 0 16.0 0.9 807.3 257.5 7

20 6.1 2.1 0.7 738.1 219.1 0 20.6 0.9 1,084.7 342.1 7

30 5.9 2.0 0.5 1,105.6 335.1 0 31.1 0.9 1,386.8 423.0 30

40 5.9 3.1 0.5 1,535.1 452.8 0 38.6 1.0 1,975.6 505.7 19

50 5.9 4.6 0.6 1,960.1 562.3 0 41.1 1.0 2,357.6 586.5 30

20 20 6.3 2.3 0.8 1,767.7 456.1 0 20.9 1.2 4,175.1 757.0 15

30 6.1 2.7 0.6 2,706.0 687.6 0 24.7 1.0 6,197.4 1,074.6 30

40 6.1 3.2 0.6 3,637.2 923.8 0 33.1 1.0 7,561.0 1,288.1 25

50 5.8 4.2 0.6 4,573.3 1,139.3 0 41.3 1.0 8,902.4 1,309.6 23

30 30 6.5 4.9 0.8 4,494.2 1,043.8 0 31.0 1.2 15,002.7 1,682.2 39

40 6.2 4.5 0.7 6,058.4 1,306.9 0 35.3 1.1 19,525.5 2,173.6 54

50 6.1 5.8 0.7 7,508.0 1,740.2 0 35.8 1.1 23,280.3 2,630.1 66

40 40 6.4 6.3 0.7 8,987.8 1,961.3 0 38.0 1.2 36,641.5 3,009.3 65

50 6.1 5.8 0.8 10,519.3 2,348.4 0 40.5 1.2 44,619.3 3,640.0 77

50 50 6.2 6.2 0.7 13,079.7 3,024.9 0 45.4 1.1 75,772.6 4,639.4 80

Average - 6.1 3.8 0.7 4,346.2 1,028.7 0 31.4 1.0 15,609.2 1,529.9 35.7

Ratios - - 0.12 0.70 0.28 0.67 - 1 1 1 1 -

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:21

that were misjudged as defective ones in the SET array, and it is calculated as |misjudged defect-
free edge| / |total edge|. Column 5 (10) lists the misjudged-category (Misjud.) rate of defective
edges that were identified as defective but labeled as incorrect defect-type, i.e., the D-open (D-
short) edges are diagnosed as D-short (D-open) edges. The misjudged-category rate is calculated
as |misjudged defective edge| / |total edge|. Columns 6 (11) and 7 (12) list the number of SET node
configurations and input patterns that were used to diagnose the SET arrays. Column 8 (13) lists
the total number of false-positive edges (|F-pos. edg|) of 100 runs of each dimension and defect rate.
The false-positive edges represent the defective edges that were misjudged as defect-free edges.
The last two rows of Tables 3, 4, and 5 are the averaged results and ratios as compared with the
state-of-the-art [Li et al. 2017].

For example, in the SET array of 20×50 with a defect rate of 4%, the real defect rate was 5.8%,
the false-negative rate of our approach was 4.2%, the misjudged-category rate of our approach was
0.6%, and our approach required 4,573.3 node configurations and 1,139.3 input patterns to diagnose
the defects. On the other hand, in the work of Li et al. [2017], the false-negative rate was 41.3%,
the misjudged-category rate was 1%, and Li et al. required 8,902.4 node configurations and 1,409.6
input patterns to diagnose the defects. Furthermore, our results had no false-positive edge while
there were 23 false-positive edges totally from Li et al. [2017].

According to the last two rows of Tables 3, 4, and 5, our false-negative rate, misjudged-category
rate, node configuration count, and input pattern count are all much smaller than Li et al. [2017].
Furthermore, our approach does not have any false-positive edge while Li et al. [2017] has 27.1
false-positive edges on average. The false-negative rate in Li et al. [2017] was about 10 times higher
than ours. This is because when diagnosing a defective SET array with clustering-defects, the
method in Li et al. [2017] cannot maintain a conducting path as a baseline for neighboring paths.
Furthermore, Li et al. [2017] also has a much larger node configuration count. This is because in the
diagnosis procedure in Li et al. [2017], if the newly configured path is not conductive, the algorithm
will recover the path to the last conducting path. Therefore, when the diagnosis procedure cannot
maintain a conducting path due to clustering-defects, it will take a lot of node re-configurations
to recover the path. The averaged run time of both the proposed algorithms and Li et al. [2017] for
diagnosing 100 defective SET arrays of each size was about one second.

4.4 Undiagnosable Defect-free Edges

For most defective SET arrays, our approach can have a small false-negative rate. However, this
rate was large for some SET arrays. This is because some defects clustered together in an area
and blocked the current of the paths that were configured for diagnosing the defect-free edges in
the area. Therefore, these defect-free edges were considered as D-open edges since we failed to
configure any conducting path to diagnose them. These misjudged defect-free edges could be di-
agnosed with complicated and tortuous paths that detour all the defects surrounding them, which
is a rare case. Furthermore, some of these misjudged defect-free edges will not be involved in any
conducting path due to blocking. For example, in Figure 11(a), the two edges labeled as misjudged

defect-free edges©F were diagnosed as D-open candidates and will be considered as D-open edges
in the end. These edges are actually undiagnosable edges due to blocking accidentally. In our ex-
periments, there are a lot of defect maps having such misjudged defect-free edges, which rising the
false-negative rate. Especially, for the SET arrays with a higher defect rate, this situation occurs
more frequently. On the other hand, a clustering-defect can also create misjudged defect-free edges.
For example, for a clustering-defect with four D-short edges, it forms a multiple-path conduction
as shown in Figure 11(b). Once we configure a path including any one of its neighboring edges,
which is labeled as misjudged defect-free edges, the path will connect to the clustering-defect and
result in a multiple-path conduction. These edges cannot be used for mapping functions. There-

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

15:22 C.-C. Wu et al.

Fig. 11. Example for the false-negative and misjudged category.

fore, these edges have the same defect effect as D-open edges, and we mark them as D-open edges
in our approach, which increases the false-negative rate.

According to Tables 3, 4, and 5, our approach categorizes a few edges into an incorrect de-
fect type. Most of the misjudged defective edges were from clustering-defects in our experiments.
There are two situations of clustering-defects where our algorithm will misjudge the defective
edges. One is that the clustering-defect consists of four D-short edges as mentioned and shown in
Figure 11(b). The other is that the clustering-defect consists of three D-short edges and one D-open
edge as shown in Figure 11(c). The D-open edge in the purple rectangle is labeled as a misjudged
defective edge since it was actually diagnosed as D-short edge. This is because the current from
any path involving this D-open edge can pass through the other three D-short edges. Therefore,
the D-open edge has the same defect effect as a D-short edge.

5 CONCLUSION

We propose the first diagnosis approach for the defective SET arrays without the two defect dis-
tribution assumptions that were adapted in the prior arts. This more generalized defect model in-
cludes clustering-defect, and is more practical when particle size happened to be greater than that
of an SET node. The experimental results show that our approach can achieve low false-negative
rates and misjudged-category rates without reporting any false-positive edge. Furthermore, our
approach is more efficient since it needs fewer node configurations and input patterns for diagno-
sis. Therefore, the proposed approach can efficiently diagnose the defective SET arrays with adja-
cent defects and clustering-defects, and elevate the reliability of SET arrays in the synthesis flow.

REFERENCES

N. Asahi, M. Akazawa, and Y. Amemiya. 1997. Single-electron logic device based on the binary decision diagram. IEEE

Transactions on Electron Devices 44, 7 (1997), 1109–1116.

Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and V. Narayanan. 2011. Automated mapping for reconfigurable

single-electron transistor arrays. In Proceedings of the Design Automation Conference. 878–883.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

Diagnosis for Reconfigurable SET Arrays with a More Generalized Defect Model 15:23

Y.-C. Chen, S. Eachempati, C.-Y. Wang, S. Datta, Y. Xie, and V. Narayanan. 2013. A synthesis algorithm for reconfigurable

single-electron transistor arrays. ACM Journal on Emerging Technologies in Computing System 9, 1, Article 5 (2013).

Y.-H. Chen, J.-Y. Chen, and J.-D. Huang. 2014. Area minimization synthesis for reconfigurable single-electron ttransistor

arrays with fabrication constraints. In Proceedings of the Design Automation and Test in Europe. 1–4.

Y.-H. Chen, Y. Chen, and J.-D. Huang. 2015. Area minimization synthesis for reconfigurable single-electron transistor arrays

with fabrication constraints. In Proceedings of the International Symposium on VLSI Design, Automation and Test. 1–4.

C.-E. Chiang, L.-F. Tang, C.-Y. Wang, C.-Y. Huang, Y.-C. Chen, S. Datta, and V. Narayanan. 2013. On reconfigurable single-

electron transistor arrays synthesis using reordering techniques. In Proceedings of the Design, Automation and Test in

Europe. 1807–1812.

S. Eachempati, V. Saripalli, V. Narayanan, and S. Datta. 2008. Reconfigurable BDD-based quantum circuits. In Proceedings

of the International Symposium on Nanoscale Architectures. 61–67.

C.-H. Ho, Y.-C. Chen, C.-Y. Wang, C.-Y. Huang, S. Datta, and V. Narayanan. 2016. Area-aware decomposition for single-

electron transistor arrays. ACM Transactions on Design Automation of Electronic Systems 21, 4, Article 70 (2016).

C.-Y. Huang, Y.-J Li, C.-W Liu, C.-Y. Wang, Y.-C. Chen, S. Datta, and V. Narayanan. 2016. Diagnosis and synthesis for

defective reconfigurable single-electron transistor arrays. IEEE Transactions on VLSI Systems 24, 6 (2016), 2321–2334.

C.-Y. Huang, C.-W Liu, C.-Y. Wang, Y.-C. Chen, S. Datta, and V. Narayanan. 2015. A defect-aware approach for mapping re-

configurable single-electron transistor arrays. In Proceedings of the Asia and South Pacific Design Automation Conference.

118–123.

S.-Y. Huang and K.-T. Cheng. 1999. ErrorTracer: A fault simulation based approach to design error diagnosis. IEEE Trans-

actions on Computer-Aided Design (1999), 1341–1352.

W. H. Kautz. 1968. Fault testing and diagnosis in combinational digital circuits. IEEE Transactions on Computers C-17, 4

(1968), 352–366.

Y.-J. Li, C.-Y. Huang, C.-C. Wu, Y.-C. Chen, C.-Y. Wang, S. Datta, and V. Narayanan. 2017. Dynamic diagnosis for defective

reconfigurable single-electron transistor arrays. IEEE Transactions on VLSI Systems 25, 4 (2017), 1477–1489.

H.-T. Liaw, J.-H. Tsaih, and C.-S. Lin. 1990. Efficient automatic diagnosis of digital circuits. In Proceedings of the International

Conference on Computer-Aided Design. 464–467.

C.-W. Liu, C.-E. Chiang, C.-Y. Huang, C.-Y. Wang, Y.-C. Chen, S. Datta, and V. Narayanan. 2014. Width minimization in the

single-electron transistor array synthesis. In Proceedings of the Design, Automation and Test in Europe.

C.-W. Liu, C.-E. Chiang, C.-Y. Huang, C.-Y. Wang, Y.-C. Chen, S. Datta, and V. Narayanan. 2015a. Synthesis for width

minimization in the single-electron transistor array. IEEE Transactions on VLSI Systems 23, 12 (2015), 2862–2875.

L. Liu, X. Li, V. Narayanan, and S. Datta. 2015b. A reconfigurable low-power BDD logic architecture using ferroelectric

single-electron transistors. IEEE Transactions on Electron Devices 62, 3 (2015), 1052–1057.

L. Liu, V. Saripalli, V. Narayanan, and S. Datta. 2011. Device circuit co-design using classical and non-classical III–V multi-

gate quantumwell fets (MuQFETs). In Proceedings of the IEEE International Electron Devices Meeting. 4.5.1–4.5.4.

H. W. Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker. 2001. Carbon nanotube single-electron transistors at room

temperature. Science 293 (2001), 76–79.

Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed. 2003. Room temperature nanocrystalline silicon single-electron

transistors. Journal of Applied Physics 94 (2003), 633–637.

A. Veneris and I. N. Hajj. 1999. Design error diagnosis and correction via test vector simulation. IEEE Transactions on

Computer-Aided Design 18, 12 (1999), 1803–1816.

Z. Zhao, C.-W. Liu, C.-Y. Wang, and W. Qian. 2014. BDD-based synthesis of reconfigurable single-electron transistor array.

In Proceedings of the International Conference on Computer-Aided Design. 47–54.

L. Zhuang, L. Guo, and S. Y. Chou. 1998. Silicon single-electron quantum-dot transistor switch operating at room temper-

ature. Applied Physics Letters (1998), 1205–1207.

Received March 2020; revised August 2020; accepted December 2020

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 2, Article 15. Pub. date: January 2021.

